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VELOCITY OF DOMAIN WALLS FOR A COMPLETE

RANGE OF DRIVE FIELDS

Transient and Steady-State Velocity of Domain Walls

for a Complete Range of Drive Fields

Henry C. Bourne, Jr., and David §. Bartran

Abstract - Approximate analyﬁic solutions for transient and steady-state
180° domain wall motion in bulk magnetic material are obtained frop the
dynamic torque equations with a Gilbert damping term. The results for the
Walker region in which the transient solution approaches the familiar Walker
steady-state solutionare presented in a slightly new form for cgmpleteness.

An analytic solution COrresbonding to larger drive fields predicts an oscil-
latory motion with an average value which decfeases with drive £ield for
reasonable values of the damping parameter, These results agree with those
obtained by a computer solution of the torque equation and those obtained with

the assumption of a very large anisotropy field,

INTRODUCTION
In & previous paper<1), transient solutions for the motion of domain

walls in bulk magnetic materials were obtained from the vector equation of

motion,
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in which M 1is the saturation magnetization, v 18 the gyromagnetic ratio,
H is the effective field including applied, stray, anisotropy, and exchange
components, and ¢« is the damping parametex. .With the cocrdinate system
and wall configu;ation as represented in Fig. 1, the solutions obtained for
&, ©, and the corresponding wall velocity, v, are as follows
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{n(tan 8/2) = Co(t) [y - I v(z)dz] (2)
0
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. vey m ahz + sin ¢ cos @ ) (%)
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2, do a“xy. zh, '
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In these equations A is the exchange constant, hk is thé normalized anisotropy

field pon/M . hz is the normalized applied field -uOHz/M, and-péa 43 X 10-7

wks,
The only approximation involved concerns a consistency condition which requires
that -
_ dC2 t : '

= Iy - j{;v('r)d'r] << €, (t) v(t)
in order for @ # f(y); a basic assumption in the trial -solution,. fﬁe solution
under this assumption indicates that this approximation is an éxce}lent one.
for the wall widths.encou&féred in magnetic ﬁaterials.' This‘cohditiOn is
équivalent to neglecting the incremental velocity along the.wall comparéd ;6
thg velocity of the wall center, An alternate assumption which gives the same
result concerns the partition of Eq. 1 such that the same terms. equate to
determine the stfuctuge constant, Cé, and the velocity at the wall center, v,
during the tfansient as in the steady-state solution, which involves no ap-

proximation at least in the region 2hz/a,5 1.

For a stationary wall hz, ¢ = 0 and the equations reduce to the famiiiar



{nltan 6/2) = ¥y \YK/A . For 2hz/q.5 1, the Walker solution(z) corresponding

to 2hz/a = sin 2¢ predicts a conFracted wall moving at constant velocity.

The transient soluéion corresponding to this csnstant velocity solution is

the one examined theoretically and experimentally in previous paperssl)’(a)'(a)
- For completeness aad for comparison, this solution is repeated in a slightly
different form together with the solution for th/a > 1. All solutions

assume a step function drive field,.hz.

Walker Region:Zh /a <1

Eq. 5, which predicts that ¢ increases monotonically in time until it

reaches a steady-state value corresponding to th/a e gin 2¢, is integrated

to yield
2h /o
tan @ = 2 {
1 +\)1-(2hz/a)2 coth Bt | (6)
.with ' ' '
. .
B = -1— 92" '\/1 - (2hz/0f)2 /L + e
o .

If the appropriate trigonométric functions of ¢ obtained from Eq, 6 are
substituted in Eq, & and the hyperbolic function is expressed in terms of
exponentials, the "exact" solution of reference (1) is obtained. Note
that a factor in the gffectivé damping B involves the drive field, With
2hz/a < 1, the steady-state value of ¢ is less than m/4, Although ¢ itself

is well-behaved, Eq., 4 is sufficiently complex that the transient response

2h
1/4 12 172, 2

k < o < 1,

Ed

_contains an overshoot. for 2hk1/4(1 + hk) [{1 + hk)
as previously shown,

Limiting Case: 2h /o =1



_ 2h ' - !
In the limiting case, —55 = 1, either from Eq, 6 or directly from

integration of Eq. 5,

(M /)t /2

tan ¢ =
(Y4/u )t /2 + (1 + o)

The angle ¢ increases monotonically to W/4 and the solution is similar to
that of the previous case, with an overshoot in the transient response,

Oscillatory Region:th/a >1

In thislparticqlar case Eq. 5 predicts that ¢ continues to increase for
all time with a periodically changing rate,  From Eq; 4 the velocity behaves
as sin 2¢ &isplaced by the relatively small term ahz and modified by a posi~
tive term of oscillating magnitude in the denominator so that the wall velocity
is alternately positive (0 < ¢ < m/2) and negative (W/2 < @ < T) and repeats,

Again Eq, 5 may be integrated directly to obtain

2h /o
‘tan @ = z

1 +‘\[(2hz/a)2 - 1 cot wt

5 \/(2hz/a)2 -1 /(1 + &)

The periodic nature of the solution is apparent, “The system is in a

with
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steady-state oscillatory condition from the beginning with no transient in=
volygd. The frequency depends on the drive‘field; hz. In the limit of
ZhZ/u = 1 the previous solutlon is obtained, |

The maximum velocity magnitude in time is the aamé a8 the maximum steady~

state velocity in the Walker region and corresponds to
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[ 24 1/2 . 1/2
Ivmaxl =y ™ [(1+ hk) b7l

independent of the drive field, h . However, the time at which the maximum

sinch = hk1/2[(1 + hk)l/2 = h

and

occurs depends on h, and hz and is given by

k

/4, 1/4
- 1L 4+(2h /&)(1l + h) /h
cot wt = Z k k .

WJ(zhz/a)z -1

Figs 2, 3, and 4 give the velocity as a function of time for several values

of drive field and three values of'hk corresponding to permalloys and

bubble-type materials,

2h

For 026152) << 1, the velocity is approximately equal to zero for

¢ = 0,7 which corresponds to wt = 0, ™ , The velocity is also approximately

equal to zero for @ = TM/2 which corresponds to

1
cot wt|v=0 = \kZh / )2 71
Q! -
&

In general more time is spent in the positive velocity region and the velocity

has a nonzero average value which is shown in Fig, 5.
2h
In the limit of very larpge drives, 2hz/a >> 1 , but again 02(—55) << 1,

the positive'and negative half-cycles of velocty are an odd function about

wt = /2, @Swt=y Hz:- and the average velocity is zero, If in addition

hk >> 1 the velocity behaves as sin 2wt at vexy high frequencies.



Conclusion

With suitable approximations a complete solution af the vector equation
of motion with a viscous damping parameter may be obgained which describes
the motion of a magnetic dowmain wéll over a coﬁplete range of drive flelds,
The solution pertains to a bulk magnetic material described by an exchange
.constant, an anisotropy constant, a saturation magnetization, and a damping
parameter, The oscillatory respoase predicted inm the high drive region
probably may best be explored experimentally in materials with relatively
small saturation magnetizations and large anisotropy constants,

(5)

‘These results seem to agree with those reported by Slonczewski and

(6)

by Walker and Schryerx in a computer solution of the torque equation,
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. Normalized Velocity as a Function of Time for h

Figure Captions

Coordinate System and Wall Configuration

. = B H /i = 0,0005

and Various Drive Fields 2hz/d = 2uon/aM

Normalized Velocity as a Function of Time for h, = uon/M = 1,0

k
and Various Drive Fields 2h2/a = ZuonVaM

Normalized Velocity as a Function of Time for hk.- pon/M = 5,0
and Various Drive Fields_2hz/a = Zuon/aM

Average Velocity as a Function of Drive Field for Various h

in the Walker Region and in the Oscillatory Region
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Figure 3
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